
A technical introduction to
IBM App Connect Enterprise

12th March 2020
Subhajit Maitra

IBM NA System Z Hybrid Cloud Technical Sales
maitras@us.ibm.com

Agenda

• What is App Connect Enterprise
• Key concepts
• Product overview
• Getting Started

3

What do we mean by Integration?

• IT systems consist of many logical endpoints
• Off-the-shelf applications, services, web apps,

devices, appliances, custom built software… + now
cloud services

• These systems can reside in many different environments
whether on-premise or in a cloud data centre

• Endpoints expose a set of inputs and outputs, which
comprise

• Protocols - e.g. MQ, TCP/IP, HTTP, File system,
FTP, SMTP, POP3, Kafka etc.

• Message Formats - e.g. Binary (C/COBOL), XML,
Industry (SWIFT, EDI, HL7), User-defined

• Integration is about connecting these endpoints together
in meaningful ways

• Route, Transform, Enrich, Filter, Monitor, Distribute,
Decompose, Correlate, Fire and Forget,
Request/Reply, Publish/Subscribe, Aggregation,
Fan-in, Complex Event Processing…

4

Presenter
Presentation Notes
ENDPOINTS: different communication protocols
INPUTS: data exhanged between endpoints in different formats
INTEGRATION: mediation patterns for interoperation between endpoints – message transformation, enrichment, audit, aggregation, scaling

Three strands are involved in connecting applications together.
Applications need to talk with each other over a communications protocol. Typical protocols in use today include TCP/IP, and higher level protocols such as FTP, SMTP and HTTP.
Over the communications protocol applications exchange data, typically in discrete structures known as messages. The format of these messages can be defined from C structures or COBOL copybooks (for example), or simply use a standard format such as XML.
In order to connect applications together so that their protocols and message formats interoperate, mediation patterns need to be applied to one or both systems you’re trying to connect. These mediation patterns can be relatively straightforward, e.g. routing messages from one place to another, or the transformation of one message format into another… to relatively complex patterns such as aggregating multiple outputs from an application into a single message for a target system.

Web
service

File Database

Integration solutions are about reducing cost!

• Integration solutions simplify integration!
• Avoids rewrites in response to new integration requirements
• Simplifies maintenance by reducing expensive coupling
• Flexibility adding anonymity between producers and consumers of data
• Adds insight into applications and business value they bring

5

[Customer, Order, Quantity, Price, Date]

Mr. Smith,
Graphics Card, 32,
100, 25/12/2011

Database

Example integration

6

<order>
<name>
<first>John</first>
<last>Smith</last>

</name>
<item>Graphics Card</item>
<quantity>32</quantity>
<price>200</price>
<date>12/25/2011</date>

</order>

[Customer, Order, Quantity, Price, Date]

Web
service

File

Analytics
Monitoring

Presenter
Presentation Notes
MEDIATION TO REDUCE COSTS AND TIME BY USING AN INTEGRATION MECHANISM

This is an animated chart and describes an application integration scenario.

An Application Integration Scenario.

Application A sends some data to application B. At design time, the two applications agreed on the format of the data as the ordered set {Customer, Order, Quantity, Price, Date}. Further, the date is in UK format, the price in UK pounds sterling, and all fields are represented by character strings in codepage 500. Finally, the data is delimited using commas.

At a future date application C is introduced. It needs the same data, but because it is a packaged application from a vendor or may be an application that already existed, it expects data to arrive in a different format. The date is in US format, the price is in dollars and the data is in XML.

So, we now have an integration choice to make. Either application C must be enhanced to support the data format between A and B, or application A must be enhanced to support application C's data format. (This is an interesting use of the word “enhanced”, but you'll probably want to use it to justify the expenditure!)

By introducing a solution that can mediate between these applications, you can integrate them without spending time and money modifying and retesting the existing applications. IBM Integration Bus is one such solution.

In addition, a solution like IBM Integration Bus will also allow you to intercept or record the data as it is processed. Allowing you to satisfy audit requirements or for further analysis for use cases like fraud prevention.

IBM App Connect Enterprise

• Provides endpoints and the ability to connect to other
endpoints

• Off-the-shelf applications, services, web apps, devices,
appliances, custom built software… + now cloud
services

• Provides connectivity to systems residing in many different
environments whether on-premise or in a cloud data centre

• Protocols and Message Formats
• Protocols - e.g. MQ, TCP/IP, HTTP, File system, FTP,

SMTP, POP3, Kafka etc.
• Message Formats - e.g. Binary (C/COBOL), XML,

Industry (SWIFT, EDI, HL7), User-defined

• Build, host + consume APIs

• Mediation Patterns
• Route, Transform, Enrich, Filter, Monitor, Distribute,

Decompose, Correlate, Fire and Forget, Request/Reply,
Publish/Subscribe, Aggregation, Fan-in, Complex Event
Processing…

8

Presenter
Presentation Notes
ENDPOINTS: different communication protocols
INPUTS: data exhanged between endpoints in different formats
INTEGRATION: mediation patterns for interoperation between endpoints – message transformation, enrichment, audit, aggregation, scaling

Three strands are involved in connecting applications together.
Applications need to talk with each other over a communications protocol. Typical protocols in use today include TCP/IP, and higher level protocols such as FTP, SMTP and HTTP.
Over the communications protocol applications exchange data, typically in discrete structures known as messages. The format of these messages can be defined from C structures or COBOL copybooks (for example), or simply use a standard format such as XML.
In order to connect applications together so that their protocols and message formats interoperate, mediation patterns need to be applied to one or both systems you’re trying to connect. These mediation patterns can be relatively straightforward, e.g. routing messages from one place to another, or the transformation of one message format into another… to relatively complex patterns such as aggregating multiple outputs from an application into a single message for a target system.

A brief history of IBM Integration

MQSeries Integrator (MQSI)

WebSphere MQ Integrator (WMQI)

WebSphere Business Integration Message Broker (WBIMB)

WebSphere Message Broker (WMB)

IBM Integration Bus (IIB)

IBM App Connect Enterprise (ACE)
10

WebSphere
Enterprise Service

Bus (WESB)

V11

V9 / V10

V6 / V6.1 / V7 / V8

V5

V2.1

V2

App Connect

App Connect
Enterprise

“Toolkit” “Designer”

Administration

Managed Service on IBM Cloud (public)Software

IBM App Connect Enterprise (ACE)
• Integrations are developed using the ACE Toolkit
• Integrations deployed in a dedicated runtime or as part of our App Connect service on IBM Cloud

• Entitlement included to IBM App Connect iPaaS (Integration Platform as a Service) for cloud application connectivity

Administration

• On-premise software • Run it yourself in any
cloud, public or
private

• Let IBM host it for
you with its
managed SaaS App
Connect service in
public cloud

• Run and manage
IBM App Connect
Enterprise in any
location or cloud exactly
as you need it

20years

Celebrating

Private cloud

IBM Cloud Private

AWS

AWSAzure

AWSAWS

Linux
AIX
zLinux
Windows
MacOS
…

Red Hat OpenShift

IBM App Connect Enterprise

IIB on z/OS ?

13

• Statement of Direction: IBM Integration Bus on IBM Z platform
• Jan 21, 2020
• http://www-01.ibm.com/common/ssi/ShowDoc.wss?docURL=/common/ssi/rep_ca/3/897/ENUS220-

083/index.html&lang=en&request_locale=en

Also available as part of Cloud Pak for Integration

MQ

Key Concepts

15

Presenter
Presentation Notes
You’ve seen some of the qualities and capabilities of the ACE/IIB product, now lets look more closely about how it works.

The image in the middle of this slide represents the IBM App Connect Enterprise/IBM Integration Bus runtime.

It can connect multiple different applications and systems together .

MQ applications…
Legacy Back end applications or Enterprise Information Systems
Databases
Files
REST APIs
Web Services
etc. etc.

In ACE/IIB you an define specific integrations between one systems and one or more other systems

eg. An MQ applications writing a file based application

In ACE/IIB the logic of this integration is described by a message flow.

eg. The MQ application might send a message to the flow which could write a file for the back end batch processing application to process

The message flow is a key concept in IBM App Connect Enterprise/IBM integration Bus.

Output targetTransform

Input source Output target

Output target
(Failure)

Message flows

• Reusable
• Scalable
• Transactional

17

Presenter
Presentation Notes
So let’s look more closely at the concept of a message flow

Message flows provide the sequence of processing logic required to connect applications and systems together.

A message flow contains the set of operations required to take a message from an originating application and deliver copies of it, transformed appropriately, to any number of other connected applications for processing.
As data passes through a flow, it is transformed, enriched and routed according to the nodes it encounters. Later we'll see more about what nodes are and what they can do.
For a given integration the flow describes all the possible outcomes when processing a message.
For example… copies of the data might be logged for audit purposes
Or if the data is not well-formed it might be routed to a security application to raise an alert
Also important is the visualization of the integration.
Being able to view the integration structure and flow brings benefits in understanding, maintenance and reuse potential, and application architecture/standards conformance.
After data has been processed by a flow, the flow does not maintain any state. It is possible to maintain such state in a persistent form (e.g. database or the product’s embedded cache), or within the data by using an extensible header such as the MQRFH2.

Message flows are general purpose, reusable integration applications.

Flows are made of reusable blocks called nodes.
Useful sequences of flow logic can be reused by nesting it inside a subflow.
Subflows can be shared between multiple different flows and applications.
Sophisticated integrations can be rapidly constructed by chaining individual flows together as well as using subflows.

Message flows are multithreaded.

A given message passing through a flow will execute on a single thread.
To allow increased message throughput, message flows can be defined with many additional threads assigned to them.
At peak workloads additional threads will be used, which are pooled during inactivity. We'll see more implementation details later.
Flow scaled horizontally by being deployed across multiple servers.
This means application scaling can be an operational rather than design time decision.

Message flows are transactional.

Integration flows provide vital processing and data manipulation and are therefore fully transactional. A message flow either completes all or none of its processing successfully.
The transaction begins in the input node. Any work done by nodes downstream is part of the transaction. Any interaction with external systems can be part of the transaction if the external system supports it.
For example interactions with a database or messaging system can be part of the IIB co-ordinated transaction.
After the last branch of the flow has completed, control is returned back up through the levels to the input node. Once here the transaction is committed and the flow is complete.
If required, individual nodes can elect to perform operations outside of the flow transaction. (e.g. logging for audit purposes)

Message flow example

19

Presenter
Presentation Notes
Here is an example of a message flow.

The ‘Read from MQ Queue’ node tells ACE/IIB to take messages from an MQ queue (the name of which is embedded as a property of the node, or overridden by an administrator at deployment time).

The message is passed onto the ‘Is Gold Customer?’node, where a routing decision is made based on a field described in the incoming message, again which is a property on the node itself. We’ll see exactly how this condition is specified later on.

If the described condition holds, the message is routed to the ‘Generate WS Request’ node where the message is transformed – presumably into an SOAP message that is recognisable by the web service which is invoked by the subsequent ‘Call WS’ node.

If the described condition does not hold, the message is routed to the ‘Generate batch file’ node, which formats the message for subsequent output to a file in the ‘Write file’ node.

This flow may not tell the complete integration story between the calling application and the target Web Service/File applications.
For example, there is no communication back to the calling application to say that the message has been processed (or even received).
Nor is there any logic in the message flow to cope with failures – for example, if the web service is not available. This is logic that could be incorporated into the flow, but not visualised here for clarity.

Nodes

• The building blocks of message flows

• Each node type performs a different (input,
output or processing) action

• Many different node types
• Grouped into logical categories in the editor

21

Presenter
Presentation Notes
A Nodes is an individual processing step in a message flow.
They are wired together in the message flow to produce the complete sequence of steps required to integrate one application to another.
There are built-in nodes, user-defined nodes and also subflow nodes.

Nodes can be grouped in several ways; for example, by where in the flow they are used:
Input nodes do not have input terminals; processing of the message flow starts when a message is retrieved from an input device, for example IBM MQ.
Output nodes do not have output terminals (or at least, they are not wired to any other node). The final stage of output processing is after a message is put using one or more output nodes, and processing control returns to the input node which commits or backs out the transaction. Recalling that a message flow is analogous to a functional decomposition, it makes sense that the top most level (i.e. the input node) controls the overall transaction.
Processing nodes are nodes that are neither input nor output nodes. They will be connected to nodes both upstream (i.e. towards the input nodes) and downstream (i.e. towards the output nodes).

In the integration toolkit nodes are organized into drawers by the function that they perform.
Some of these categories are grouping of nodes for connecting a specific system or protocol.
eg. MQ nodes, SOAP nodes, File nodes…
Others are groups of functional processing nodes.
Transformation nodes will take a message in one format on the input terminal and output a converted message on the output terminal. Some of these “transformation” nodes are actually more generally useful programming nodes that can be used to provide a range of functionality in the flow. More on this later.
Another group is the Routing nodes give the message flow designer the vocabulary required to solve complex integration scenarios, for example, the ability to aggregate messages from multiple places or the ability to filter messages based on their content.

Lots of nodes are built in

23

Presenter
Presentation Notes
Here’s a slide full of nodes.. There are a large number of the built-in nodes in IBM App Connect Enterprise/IBM Integration Bus. :

The MQ nodes allows ACE/IIB to interact with queues on MQ queue managers. For example, MQInput is an input node that triggers a flow when a message arrives on a queue; MQOutput puts a message to a queue.
The WebSphere Adapters nodes provides native support in ACE/IIB for inbound and outbound communication with Enterprise Information Systems such as SAP.
Web Services nodes (SOAP) provide a rich environment for running as a Web Services requestor, provider and intermediary. Support for WS-Security, WS-Addressing, import and export of WSDL and validation against the WS-I Basic profile.
HTTP nodes complement the Web Services capability. Support is provided for HTTP 1.0, 1.1 and HTTPS.
JMS nodes work with *any* JMS 1.1 compliant provider.
The EmailOutput node is a highly configurable node that allows e-mail messages to be sent over the SMTP protocol.
TCP/IP nodes allow ACE/IIB to communicate with any client or server talking the ubiquitous TCP/IP protocol.

Database nodes allows message flows to interact with many different data sources, including DB2, Oracle and SQL Server.
Timer nodes provide support for triggering message flows and certain times or intervals.
Routing nodes allow messages to easily flow around a network, and also allow them to be aggregated.
File nodes allow messages to be read from, or written to the local file system or an FTP server.

input
terminal

input
connection

output
connection

node

input
message

tree output
terminals

Failure
terminal

output
message

trees

Node Anatomy

25

Properties

Action

Presenter
Presentation Notes
So we’ve seen a whole bunch of nodes. Lets look in more detail at the attributes of a node…

A node defines a single logical action on a message.
A node is a stand alone procedure that receives a message, performs a specific action against it, and outputs zero or more messages as a result of the action it has taken.
The action represented by a node encapsulates a useful and reusable piece of integration logic. Nodes can be thought of as reusable components in an integration library.
A node is joined to its neighbours in the data flow through connections attached to its terminals.
Every node has a fixed number of connection points known as "input" terminals and "output" terminals. These allow it to be connected to its neighbours.
Each node normally has one input terminal through which it receives messages, and multiple output terminals for different processing outcomes within the node
Different types of node have different numbers of terminals.
In some nodes the number of output terminals is determined by the nodes configuration.
Most nodes have a specialised output terminal called the failure terminal. When an error occurs inside that node the message is routed to the failure terminal. If it has no connection an exception is thrown and will be routed to the Input nodes Catch terminal (Some other nodes have catch terminal and will catch exceptions if present such as the TryCatch node) .
A connection joins an output terminal of one node to an input terminal of the next node in the flow.
You can leave an output terminal unconnected which will cause that branch to stop processing.
You can also have multiple connections from a single output terminal to more than one target node. In which case multiple copies of the message are propagated in turn to each connection.
The path a message follows through the flow is determined by the connections and the specific action of each node routing the message to a specific terminal.
Nodes mostly only push a message to one of it’s output terminals.
Some nodes may be configured to produce multiple messages to the same or different terminals.
The behaviour of a specific node is determined by it’s configuration which is defined by a set of properties on the node. Some properties can be overridden at deploy time by an administrator and some nodes support use of a policy to configure behaviour administratively.

…draCscihparG,htimSderF

Input Message Bit-stream

…n/<htimS.rM>eman<>redro<

Output Message Bit-stream

Parser converts
bit-stream to
logical tree

Model

Parser converts
logical tree to bit-
stream

Model

The Parser and Message Tree

27

Presenter
Presentation Notes
So as you’ve seen most nodes operate on a message tree (or message assembly).

But input nodes tend to receive data in some application or protocol specific format.
Which until interpreted is just a stream of bit and bytes.

In this example you can see the bit stream contains CSV type text data….

IIB contains a component called a PARSER (sometimes referred to as DOMAIN) whose job is to extract the logical tree of data (or Message Tree) from the bit-stream…
Depending on the data format and the configuration it may or may not require a specific description of that data format (or message model) to do this.

The specific parser to use in often specified in the configuration of the input node…

The message tree of data flows through the message flow and can be transformed by nodes it passes through…

In an output node the message tree has to be reassembled into a bit-stream to be consumed by the connected application or system.
This serialization of data is also done by a parser. (which may be different from the input parser)

<order>
<name>

<first>John</first>
<last>Smith</last>

</name>
<item>Graphics Card</item>
<quantity>32</quantity>
<price>200</price>
<date>2007-11-14</date>

</order>

Order

Name Item Qty Price Date

First Last
Strin
g

String

String Integer Integer Date

Physical Logical

Message Model

29

XM
L

{“order”:
{“name”:

{“first”:”John”,
“last”:”Smith”},

“item”:”Graphics Card”,
“quantity”:32,
“price”:200,
“date”:”2007-11-14”}} JS

O
N

John,Smith,Graphics Card,
32,200,07/11/14 C

SV

John Smith............
Graphics Card.........
3220020071114......... C

BL

.XSD.DFDL.DFDL

Presenter
Presentation Notes
So I already mentioned The message model.
Lets look a bit more closely at it.

In the previous example you saw the bit-stream contained the data in it’s application specific or physical format.

And that the parser extracted from that the logical tree of data ,like on the right here with a number of fields containing pieces of business data with names, types and values and .
in the case of complex fields child elements .

And we saw that the parser often needed a message model to describe the specific tree of logical data and in some cases the associated physical format if not implied.

IIB has a number of built-in PARSERS that can handles a very wide range of data.

The main ones are the XML parser for XML.

The DFDL parser which can handle pretty much any application specific or industry text or binary data format. Like the CSV message and the COBOL data structure.

And the JSON parser

Message Model

C Header

XML
Schema

COBOL
Copybook

WSDL

Import

Discover
(e.g. SAP,

Siebel,
PeopleSoft,
Database)

Standard
SOAP, MIME,

CSV EDIFACT,
SWIFT X12,

HL7, ISO8583,
TLOG, FIXML,

ARTS ….

Define
your own
DFDL Editor
and Tester
XSD editor

Parsers

IBM App Connect Enterprise

Creating Message Models

31

Presenter
Presentation Notes
So we talked about message models.

These are important in translating your physical bit stream to a logical tree of data.
And for checking(validating) that your data conforms to the expected format.

You a have a number of options depending on what assets you already have and what kind of data you need to process.

You can IMPORT existing models from your enterprise into ACE/IIB.
For example you may have existing XML schemas and/or WSDLs that describe your XML data handled by your XML or Web Service applications. These can be imported directly into IIB and used.
Or you may have some other description of your data such as a COBOL copybook or a C header file. These can imported and used to automatically generate DFDL message models to be used in IIB.

DISCOVER data objects produced by the various adapter nodes so they can be used in the flow. DISCOVER database schema that can be used in nodes in the flow to act of the data base data.

REUSE STANDARD BASED MESSAGE MODELS – There is Built-in support for MIME and SOAP. There are also a number of XML based general and industry specific message standards for which schema are widely available.
And there are also DFDL schemas available for a wide range of Industry specific text and binary message formats. For example SWIFT , HL7 and ISO8583

Or there are excellent edit and test tools in the product for CREATING YOUR OWN DFDL models for your own text and binary message formats .

• Graphical, easy to use
• Drag and Drop fields,

apply functions

• XML to XML
Transformation

• Uses standard XSL
Stylesheets

• Describe powerful
transformations quickly

• Uses SQL-based
language (ESQL)

• Uses Java
programming language

• Ability to use XPath,
JAXB

Powerful transformation and programming
options

33

• Invoke general
purpose logic in any
.NET supported
language

• Windows only

Presenter
Presentation Notes
There are several options available to you out-of-the-box for transforming between message formats:

The Java compute nod, .NET compute node and (ESQL) compute node offer an environment for inserting custom programming logic in your message flow to achieve message transformation or other tasks.

All three allow propagation of one or multiple message down stream through a choice of terminals.

The choice of node is very much specific to a customers needs and skills.

The mapping node provides code-free and easy to use graphical transformation of the message tree by the creation of “maps”.
Create field mappings by dragging and dropping between the input and output message tree.
Apply a range of built in (and custom) transforms to each mapping.

The XSLT node allows transformation described by the standard XSL (eXtensible Stylesheet Language) to be applied to the message tree.

public class jcn extends MbJavaComputeNode {
public void evaluate(MbMessageAssembly assembly) throws MbException {
...
String lastName =

(String)assembly.getMessage().evaluateXPath(“/Body/Order/Name/Last”);
...

}
}

IF Body.Order.Date < ‘2008/01/01’ THEN
INSERT INTO Database.OldOrders (LastName,Item,Quantity)
VALUES (Body.Order.Name.Last,

Body.Order.Item,
Body.Order.Quantity);

ENDIF;

Easily address message elements

35

Presenter
Presentation Notes
Each node’s configuration (which can include code in the compute nodes) dictates what you want the node to do, and this may include manipulation of one or more elements in the message tree.

Here are some examples of node configurations that address elements in the logical tree.

In the Java Compute Node you can address fields using the built in API and xpath expressions.
You can also generate JAXB code from your message model schema and use this to manipulate the message data instead.

Many nodes including the Route node here, provide properties or tables of properties that take XPath expressions to fields in the message as values.

Other nodes like this DataInsert node use the ESQL language which has a handy . Separated path notation to fields in the data.

Easily address message elements

37

The Mapping node allows the message tree to be referenced by creating visual mappings from one field to another..

Presenter
Presentation Notes
And the Mapping node allows the message tree to be referenced by creating visual mappings from one field to another..

IBM and third-party extensions

Many other nodes and features available through product extensions
Write your own User-Defined Nodes or Connectors

Native node framework available in C and Java
OT4i connector framework provides means to implement full lifecycle, including endpoint discovery

38

V4.0.0.0 V2.0.0.2 V1.0.0.1

Presenter
Presentation Notes
I have given an overview of many of the nodes and other building blocks of message flows available out of the box in IIB.

But many others are available via products extensions such as the Industry packs for IBM integration bus.
Healthcare, Manufacturing and Retail

Check out the OT4I GitHub repository for product extensions

The DFDL schemas GitHub repository has examples of DFDL models for many different industry standard message formats.

IBM Integration Bus is extensible – There are supported frameworks for writing your own nodes and your own connectors

Applications and Libraries
Integration Services and REST APIs

• Specialized containers to develop, deploy and manage your integration solutions.

• Application
• Group resources for a specific integration solution

• Library
• Group common resources for reuse
• Can be deployed once (shared) or build into an application (static)

• REST API
• Specialized application - Implement a REST API described by a swagger document.

• Integration Service
• Specialized application – Implement a Web Service described by a WSDL

40

Presenter
Presentation Notes
So having looked at messages flows and the nodes they contain and the parsers and models they use… that together described the processing logic in a flow.

We now have to understand something how these are organized, managed and deployed to the IIB runtime…

ACE/IIB provides a number of containers for message flows and other related resources to aid in the job of developing, deploying and administering them.

Applications -
Encapsulate a single integration.
May contain multiple flows and related resources like schemas, maps and Java code.
Applications can reference one or many libraries.

Libraries -
Are a container for resources that you want to reuse in multiple applications.
There are two type of library in ACE/IIB static and shared libraries.
New in v10 shared libraries can be deployed and managed on their own.
Multiple applications can reference a single deployed shared library.

Integration Service -
An integration service is the name for a specialised application exposed as a web service over HTTP via a WSDL interface.
The operations of the WSDL are implemented as message flow.
In other ways they can be handled much like applications.

REST API -
A REST API application in IBM App Connect Enterprise/IBM integration Bus is a specialised application exposed as a REST API over HTTP via a swagger interface.
Each operation on each resource can be implemented as separate message flow.
In other ways they can be handled much like applications.

Applications and libraries are packaged in BAR files before being deployed down to one or more servers

Runtime Components

• Architected for
Performance
Scalability
Resiliency

• An Integration Server
provides the runtime
environment for
message flows

• 2 main operating
modes for Integration
Servers

• Independent
• Node-owned

42

Run independent Integration Server
process for container use cases

An Integration Node provides
process supervision for more
traditional on-prem deployments

Presenter
Presentation Notes
Now that we‘ve understood the architectural concepts of IBM App Connect Enterprise/IBM Integration Bus
(message flows, nodes, parsers, the message tree, message models as well as applications and libraries) we’ll take a quick look at the ACE/IIB product architecture…

The Integration Toolkit is the development environment. Based on the Eclipse platform, all the objects required to perform application integration using ACE/IIB are developed, deployed and tested here. It provides standard ways to build integration applications, perform version control and provide for the development of custom plug-ins, such as resource editors to allow users to create project resources easily. Examples are custom editors to aid flow creation, ESQL editing and syntax checking, message set modelling, and a raft of other activities. It includes a unit test broker environment.

The Integration node (or broker) is the container that hosts Integration servers (or execution groups). Each server is an operating system process that contains a pool of threads responsible for running the message flows that are deployed to it.
Flows are deployed to servers in applications which may contain reusable sets of resources inside static libraries.
Shared libraries are independently deployed to the server.
The integration servers directly interact with the endpoints that are being integrated.
You can configure a server to either use it’s own specific listener for inbound HTTP traffic to give separate endpoints for each server, or use the node wide listener to give load balancing between servers.
It is also possible to use an external HTTP listener for load balancing and fail over between nodes.

The web user interface provides administration capability, including monitoring of deployed objects and the ability to start, stop, delete, deploy, manage workload.
As well as administer policies that effect the behaviour of message flows.
The APIs that the web UI uses are published and can be used by custom administration applications and automation, either through Java, REST or command line scripts.

Overview of administration options

Integration
Toolkit

Command line

Integration
Node

Third Party
Tools

Web
Admin

REST API

Independent
Integration

Server

Integration
Servers

Administration using the Web User Interface

myhost.adomain.com:7600myhost.adomain.com:7600

Getting started

46

Tutorials Gallery

47

Presenter
Presentation Notes
Explore the capabilities of ACE/IIB through the growing list of tutorials available from the ACE/IIB tutorial gallery.

Summary

• Universal connectivity from anywhere, to anywhere
• Comprehensive protocols, transports, data formats and processing

• Connect to applications, services, systems and devices
• Understands the broadest range of data formats

• Simple programming with patterns and graphical data flows
• Patterns for top-down, parameterized connectivity of common use cases
• Graphical data flows represent application and service connectivity

• Extensive management, performance and scalability
• IBM App Connect Enterprise fully managed service

• Sign up for a free trial
• Download and use Developer Edition

• Fully functional and free (for dev / test)

48

Presenter
Presentation Notes

To download the latest ACE Developer Edition use the following link: http://www-01.ibm.com/support/docview.wss?uid=swg21883227
And from there follow a download link
.
Alternatively Google “IBM App Connect Enterprise for Developers Version 11 United States” to find the same web page.

	A technical introduction to IBM App Connect Enterprise
	Agenda
	What do we mean by Integration?
	Integration solutions are about reducing cost!
	Example integration
	IBM App Connect Enterprise
	A brief history of IBM Integration
	Slide Number 11
	Slide Number 12
	IIB on z/OS ?
	Slide Number 14
	Key Concepts
	Message flows
	Message flow example
	Nodes
	Lots of nodes are built in
	Node Anatomy
	The Parser and Message Tree
	Message Model
	Creating Message Models
	Powerful transformation and programming options
	Easily address message elements
	Easily address message elements
	IBM and third-party extensions
	Applications and Libraries�Integration Services and REST APIs
	Runtime Components
	Overview of administration options
	Administration using the Web User Interface
	Getting started
	Tutorials Gallery
	Summary

