Data Gravity, Data Virtualization and Data Fabric – What It All Means for z/OS and for the Enterprise

IBM Z Council – West Coast

March 17, 2022

Robert Catterall, IBM Senior Consulting Db2 for z/OS Specialist

First concepts, then context

• The concepts of data gravity, data virtualization and data fabric are important to understand in a non-platform-specific way

• Why? Because they apply to all manner of data-hosting platforms, not just IBM Z

• With an understanding of the cross-platform importance of the concepts, we can look at them specifically in a Z context, and highlight enabling technologies

Agenda

- Data gravity, data virtualization and data fabric a non-platform-specific view
- Making the concepts real for IBM Z and z/OS

Data gravity, data virtualization and data fabric – a non-platform-specific view

Data gravity

- In the physical world, gravity is related to mass – the greater the mass, the greater the gravitational pull
- The data gravity concept is similar: the greater the amount of data on a "system of origin," the greater the "pull" of that data

• What that means:

 Instead of fighting gravity by copying the data to other platforms for various types of processing (reporting, ad-hoc query, machine learning, specialized applications – whatever), *bring the processing to the data*

The costs of fighting data gravity...

• Copying data from its system of origin to other platforms so that it can be accessed for various purposes has associated costs:

- From a data security perspective, it "increases the threat area" the greater the number of places in which a set of data is stored, the greater the chances that the data could be accessed in non-approved and potentially harmful ways
- Data consistency challenges: multiple copies of a set of data can become inconsistent, and inconsistency can lead users to lose trust in the data, and data that is not trusted tends not to be used
- Data latency challenges: data copied to another system could be hours or more behind currency with respect to the source data, and increasingly users want access to data that is up-to-the-second current

The costs of fighting data gravity (2)

- Data governance challenges: with multiple copies of a set of data, will there be consistency with regard to data cataloging, data discovery, data classification, and so on?
- "Hard" costs: copying data from systems of origin to other systems to support various uses has very real resource costs:
 - Hardware expenses (compute, storage, network)
 - Software expenses (replication and ETL, and OS and DBMS software on target systems)
 - Personnel expenses, to manage replication/ETL processes and to manage target systems
- And, of course...

Complexity

Does this look familiar?

<u>In-place access</u> to system-oforigin data can significantly simplify and streamline an enterprise's IT infrastructure

Data virtualization – the augmented reality analogy

- In this picture, the room is real, but the furniture in the room is not
 - Furniture itself could be real, but pieces are in another location – augmented reality makes it appear that the real (but remote) furniture is in the real room

- So it is with data virtualization the technology can make it appear that data actually stored at location A is present alongside other data at location B
 - Because the two sets of data appear to be co-located, users can perform joins of data in the two sets, and other things that would be otherwise not do-able

Another data virtualization effect

• In this example, augmented reality is changing the appearance of what is really there – enriching real on-the-shelves items with informational color

- So it is with data virtualization the technology can change the way a data source appears to a data-consuming user or application
 - For example, data virtualization technology can make data in a file appear to be data in a relational database management system, and therefore accessible using a SQL interface such as JDBC or ODBC

Data virtualization and data gravity

- Data virtualization is very important when it comes to working <u>with</u> data gravity and not against it
- With effective data virtualization, in-place access to data on the system of origin becomes much more feasible from a <u>user's</u> (or application's) perspective:
 - Data can be accessed in-place at location A and at location B, but can appear co-located to a user or an application
 - Data that can be in a not-easily-accessible form on its system of origin can be made to appear in a much more easily-accessible form, without having to be copied to another system

Data fabric – like a smart universal remote for your data

- Not long ago, you needed separate remotes (i.e., separate user interfaces) for various devices and systems in your home
 - For your TV, your stereo, your cable converter, your air conditioner/heater, etc.
 - <u>And</u>, these remotes were dumb, and often a pain to use

- Today, a single smart universal remote (a "virtual assistant") can manage all kinds of devices and systems, <u>and</u> it has a good bit of intelligence (it learns), <u>and</u> it has a really user-friendly interface (you can talk to it)
- So it is with data fabric...

Uniform, intelligent, user-friendly

Data fabric architecture

- An abstraction layer that brings uniformity and consistency to a disparate collection of data sources
- Uniformity and consistency *not just for user access* also for:
 - Data discovery
 - Data cataloging
 - Data protection
 - Data governance
- A smart fabric AI and machine learning technology are leveraged for intelligent automation of data management tasks
- Data sources can be a mix of on-prem and in-cloud (public and/or private)

Plenty of analyst's views on data fabric – here's one

Data fabric is about...

Dynamically orchestrating disparate data sources intelligently and securely in a self-service manner and leveraging various data platforms to deliver integrated and trusted data to support various applications, analytics and use cases

Data-driven organizations use data virtualization and data fabric architectures to get value from data quickly and to support new business requirements such as real-time and integrated insights

Data gravity, data virtualization and data fabric

- Data gravity and data virtualization are important for a data fabric
 - In-place access to data on systems of origin (i.e., working <u>with</u> data gravity, not against it) is key to data fabric efficiency and performance
 - Data virtualization enhances the data fabric user experience for business users, application developers, data scientists – by abstracting particulars of different data sources
 - Users are more productive because they can focus on the data itself and not on particularities of data organization and data-serving platforms

Making the concepts real for IBM Z and z/OS

Data gravity – Db2 Analytics Accelerator for z/OS

- Data gravity is about "bringing the processing to the data"
- If the processing in question is high-volume batch or transactional work, *no problem for z/OS*
 - z/OS systems, with Db2, IMS or even just VSAM files have long been processing huge "run the business workloads"
 - Thousands of transactions per second for a single LPAR, and "n" times that volume when running n-way Db2 or IMS data sharing on a Parallel Sysplex cluster
- But what if we're talking about an analytics workload, characterized by complex, data-intensive queries? Can we bring that to z/OS-based data?
 - **YES** that's where the Accelerator comes in

Accelerator architecture

- The Accelerator has been around for 10+ years
- Formerly, implemented as an outboard analytics server connected to front-end Db2 for z/OS system
- The modern Accelerator is a virtual server, running in a containerized form on mainframe IFL engines frontend Db2 for z/OS system can be in same mainframe
- Within Accelerator container: Db2 for Linux
 - Because of containerized form, no need for Linux admin
 - Accelerator's Db2 is Db2 Warehouse, with BLU Acceleration
 an in-memory, column-oriented data organization
 - Complex, data-intensive queries can run 100s of times faster versus front-end Db2 for z/OS system

True hybrid transaction/analytical processing

- Logically invisible queries are directed to the front-end Db2 for z/OS system
- Db2 for z/OS optimizer automatically determines if query would run faster on front-end or on Accelerator and routes query accordingly
- Query result returned to user or application as usual
- Integrated synchronization keeps copies of tables on Accelerator within 1-2 seconds of currency, with almost no use of generalpurpose engines

What about z/OS-based data outside of Db2?

- That's where the Db2 Analytics Accelerator Loader comes in
- The Loader can load non-Db2 data simultaneously into a front-end Db2 for z/OS table and an Accelerator table, or into an Accelerator-only table

Data gravity – Watson Machine Learning for z/OS

- Predictive models developed using machine learning technology offer the opportunity for <u>real-time insights</u> that can be infused into <u>operational</u> applications, for purposes such as...
 - $_{\circ}$ Fraud detection
 - $_{\odot}$ Cross-selling and up-selling for online shoppers
 - $_{\circ}$ Customer care

 $_{\circ}$ And much more...

- <u>But</u>, is real-time scoring feasible for high-volume, response-time-sensitive z/OS-based transactional and batch systems?
- Yes that's where Watson Machine Learning for z/OS comes in

IBM Watson Machine Learning for z/OS (WMLz)

Provides an end-to-end machine learning platform for AI on z/OS

- Delivers predictive analytics capabilities on IBM Z to generate real-time insights <u>at the source system</u>
- Delivers essential model versioning, auditing and monitoring
- Supports high availability, high performance (score can be generated in < 1 ms), low latency and ML model automation
- Offers quick-start solution templates for common business
 requirements to kick-start machine learning projects

Works <u>with</u> data gravity, and integrates with existing application environment

- Leverage <u>current data</u> for improved insights
- In-place data access for efficiency and morefrequent model refresh
- Models can be developed by data scientists on Linux systems, imported and deployed in z/OS
- Optimized deployment at point-of-transaction

Watson Machine Learning for z/OS – architecture

- IBM Open Data Analytics(IzODA) provides the base data access and Spark/Python libraries
- WMLz provides machine learning libraries and full life cycle model management and deployment capabilities (the services are REST-callable)
- Jupyter Kernel Gateway provides access to ML resources from Linux Services
- Db2 used as metadata and machine learning asset repository
- SAF provides authentication services
 - Support both RACF keyring keystore and file-based keystore

WMLz components and bundled components

Data Virtualization Manager for z/OS

z/OS-based data

- Enables applications and users to access to non-relational z/OS-based data sources via modern interfaces such as JDBC, ODBC and REST (latter in conjunction with z/OS Connect)
- Runs in z/OS substantially better performance versus IBM InfoSphere Classic Federation Server for z/OS (an older virtualization solution)
- Virtualization processing done by DVM is essentially 100% zIIP-eligible
- DVM also allows joins to be performed for different data sources (and that includes joins data in z/OS and on remote servers)

Cloud Pak for Data

It's not called "Cloud Pak for Data for z/OS" because it is applicable to <u>all</u> of an enterprise's data platforms

- IBM's premier data fabric-enabling technology
- Unified, modular, deployable anywhere – on-prem, private cloud, public cloud (IBM, Microsoft Azure or AWS Cloud)
- Also available in as-aservice form, fully managed on IBM Cloud
- Data virtualization works with DVM for access to non-relational z/OS-based data sources

App Developers and SREs | Data Engineers | Data Stewards | Data Scientists | Business Users

Integrated User Experience Extensible: APIs, partner ecosystem, accelerators, and solutions								
 Collect Data virtualization Provision SQL and NoSQL databases Event ingestion Streaming Analytics Apache Spark 	 Organize Data transformation Data quality and classification Policies and rules Data cataloging DataOps Self-service discovery and search 	 Analyze and Infuse Business reporting Data science and visualization AI lifecycle automation AI Apps Industry accelerators 						
Core services – User ad – Securit – Volume – Monito	 Service provisioning Operators Diagnostics Backup and migrate 							

Red Hat OpenShift

Cloud Pak for Data – <u>intelligent</u> data management

Example: automatic and dynamic masking of address information, based on security rule and user role

≡	IBM Cloud Pak f	or Data		All	~ C	入 Search					¢	S
	Z Data Catalog - En	force Rules							C) ()	88	
S	^{ata} D254_USERS									Remove Add	to project +	
0	verview	Asset	Access	Review	P	rofile	Activities					
Scl	nema: 19 Colo riew: First 1000 rov	umns 2000i ^{ws}	rows 3 Columns	s masked						Last refresh: jus	it now G	¥
۲	PERSON 🔒 💿 String	CURRENT © Integer	RETIREMENT © Integer	BIRTH_Y © Integer	BIRTH_MO © Integer	GENDER © String	ADDRESS 🖞 🎯 String	APARTM [©] String	CITY © String	STATE © String	ZIPCODE 🔒 🎯 Integer	D L
	Perso V			Code 🗸 🗸	Month 🗸				City ~			
	3f3d4f9ff4dd66c	53	66	1966	11	Female	XXXXXXXXXXXXXXX		La Verne	CA	XXXXXXXXXXXXX	3.
	f5902dc7c233d4	53	68	1966	12	Female	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		Little Neck	NY	XXXXXXXXXXXXX	4
	f31a14018ad40	81	67	1020	11	Female	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		West Covina	CA	XXXXXXXXXXXXX	3
	776dc2739821c	63	63	1957	1	Female	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		New York	NY	XXXXXXXXXXXX	4
	56fa6c330f710c	43	70	1976	9	Male	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		San Francisco	CA	XXXXXXXXXXXXX	3
	1446a88342d02	42	70	1977	10	Male	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	6	Davenport	IA	XXXXXXXXXXXX	4
	2ea74c08dae63	36	67	1983	12	Female	XXXXXXXXXXXXX	1	Louisville	KY	XXXXXXXXXXXX	3
	815daf6edd2b6	26	67	1993	12	Male	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	10	Portland	OR	XXXXXXXXXXXX	4
	6a67fbfba7a0ba	81	66	1938	7	Female	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		Telford	PA	XXXXXXXXXXXXXXX	4

Not just IBM technology – an expanding CP4D ecosystem

A data fabric enabled by Cloud Pak for Data can turn this...

Into this...

Any data, any cloud, anywhere

To recap...

- Data gravity, data virtualization and data fabric are concepts, but they are <u>important</u> concepts when implemented, they can deliver real value
- These concepts are <u>not</u> platform-specific they apply across data-serving platforms
- IBM has technologies that can make these concepts <u>real</u> for z/OS systems

 among those technologies are...
 - Data gravity enablement: Db2 Analytics Accelerator for z/OS, Watson Machine Learning for z/OS
 - Data virtualization enablement: Data Virtualization Manager for z/OS

• Data fabric enablement: Cloud Pak for Data

Robert Catterall

rfcatter@us.ibm.com